Title of Course		Physical Chemistry			
Semester		Autumn/Spring			
Teaching		Total	- Lectures:	- Tutorials:	
Hours per Course:		30	30	-	
ECTS Credits		2			
The content of education					
Aims of	The	The aim of the course is to obtain knowledge in the field of			
Course	ther	nermodynamics, thermochemistry, statics and kinetics of chemical			
	react	reactions.			
Program	Equation of ideal gas state. Real gases (the virial equation of state, van der				
	Waals equation), compressibility factor, principle of corresponding states.				
	Thermodynamics: thermodynamic functions, Bridgman tables. Heat				
	capacity. Thermodynamics' laws. Thermochemistry. Standard				
	ther	thermodynamic functions of reaction and formation. Chemical potential.			
	Phas	Phase diagrams of pure compounds. Clapeyron equation. Vapor-liquid			
	equi	equilibria for binary systems, phase diagrams and interpretation. Ideal and			
	real	real systems. Raoult's law, Henry's law. Liquid-liquid equilibria for binary			
	and	and ternary systems. Types of diagrams and interpretation. Solid-liquid			
	equi	equilibria for binary systems. Phase diagrams and interpretation, cooling			
	curv	curves. Thermodynamic functions of mixing for ideal and real solutions.			
	Stati	Statics of chemical reactions. The influence of conditions on the reaction			
	equi	form Subsequent perillel reversible reactions. Kinetic equations, integral			
	torm	form. Subsequent, parallel, reversible reactions. The influence of			
	lemp	emperature on the reaction speed. Theory of the active complex. Catalysis,			
	cons	nocatalysis. Methods for determining the reaction order and reaction rate			
Conditions of	Mar	Mark from the written exam			
completion	Wark nom the written exam.				
Teacher	Prof. Andrzej Marciniak				